Tidak ada review pada koleksi ini: 41352
Transportasi memegang peranan sebagai tulang punggung dari logistik, informasi,
ekonomi, serta berbagai aktivitas lainnya. Tanpa adanya sistem transportasi
yang ideal, pertumbuhan ekonomi tidak dapat berjalan secara optimal. Masalah
utama dalam bidang transportasi di kota besar di Indonesia saat ini adalah kemacetan.
Salah satu alternatif solusi untuk mengatasi masalah tersebut adalah dengan
mengimplementasikan Traffic Information Gathering System. Sistem ini memanfaatkan
3 buah sensor sebagai sumber informasi lalu lintas, yakni CCTV, Twitter,
dan Virtual Detection Zone (VDZ). CCTV dan VDZ digunakan sebagai sensor untuk
mendapatkan informasi mengenai kepadatan dari sebuah jalur serta kecepatan
rata-rata dari kendaraan yang melintas. Twitter digunakan sebagai sarana untuk
melakukan verifikasi kebenaran data yang dihasilkan dari CCTV dan VDZ.
Pada penelitian ini data dari Twitter akan diolah dengan 3 buah modul, yakni
modul pencarian nama lokasi, modul pencarian koordinat lokasi pada tiga buah kasus
input lokasi (1 input nama lokasi, 2 input nama lokasi, 3 input nama lokasi),
serta modul klasifikasi data. Modul pencarian nama lokasi dilakukan terhadap
database nama lokasi, menggunakan 3 buah metode (unigram, 3-gram scan count,
3-gram divide skip). Sedangkan pada modul klasifikasi data, dilakukan percobaan
untuk melihat kesesuaian data yang dihasilkan terhadap beberapa metode klasifikasi
(GLVQ, Naive Bayes, J48, REPTree, KNN, SLP).
Hasil eksperimen menunjukkan pada percobaan perbandingan 3 buah metode
pencarian nama lokasi dalam database, metode 3-gram Scan Count dan 3-gram Divide
Skip memiliki akurasi yang lebih tinggi dibandingkan metode unigram, yakni
sebesar 96.7% dalam kasus 30 data uji. Namun dari segi waktu komputasi, metode
dengan unigram memiliki running time cost yang paling kecil.
Hasil percobaan klasifikasi pada data Twitter yang didapat selama 5 minggu
menunjukkan bahwa data yang telah dikonversi kedalam bentuk koordinat, kemudian
dinormalisasi merupakan data yang mampu untuk diklasifikasi dengan baik.
Akurasi terbaik diperoleh sebesar 76:7213% pada percobaan pertama, diikuti dengan
akurasi sebesar 82:0566% pada percobaan kedua.