Bibliografi
Pengarang
Noer Fitria Putra Setyono;
Barcode
Judul English
Recognizing Word Gesture in Sign System for Indonesian Language (SIBI) Sentences Using Deep Convolutional Neural Network as Feature Extraction and Long Short-Term Memory as Classification
Tim penguji 3
No. Induk
Tim Penguji 6
Tim penguji 4
Timpenguji 2
Tim Penguji 7
Keterangan
Kata Kunci
Tim Penguji 5
Pembimbing 3
Pembimbing 2
Tahun buku
2020
Barcode RFID baru
11833343
Tahun Angkatan
118333432017
Progam Studi
Magister Ilmu Komputer
Tim penguji 1
Lokasi
FASILKOM-UI;
Tanggal Datang
23/11/2020
Lulus semester MTI
Abstrak Indonesia
ABSTRAK Nama : Noer Fitria Putra Setyono Program Studi : Magister Ilmu Komputer Judul : Pengenalan Gerakan Isyarat Kata pada Kalimat SIBI (Sistem Isyarat Bahasa Indonesia) Menggunakan Deep Convolutional Neural Network sebagai Ekstraksi Fitur dan Long Short-Term Memory sebagai Metode Klasifikasi SIBI merupakan bahasa isyarat resmi yang digunakan di Indonesia. Penggunaan SIBI seringkali ditemukan permasalahan karena banyaknya gerakan isyarat yang harus diingat. Penelitian ini bertujuan untuk mengenali gerakan isyarat SIBI dengan cara mengekstraksi fitur tangan dan wajah yang kemudian diklasifikasikan menggunakan Bidirectional Long ShortTerm Memory (BiLSTM). Ekstraksi fitur yang digunakan dalam penelitian ini adalah Deep Convolutional Neural Network (DeepCNN) seperti ResNet50 dan MobileNetV2, di mana kedua model tersebut digunakan sebagai pembanding. Penelitian ini juga membandingkan performa dan waktu komputasi antara kedua model tersebut yang diharapkan dapat diterapkan pada smartphone nantinya, dimana model tersebut akan diimplementasikan. Hasil penelitian menunjukkan bahwa penggunaan model ResNet50-BiLSTM memiliki kinerja yang lebih baik dibandingkan dengan MobileNetV2-BiLSTM yaitu 99,89%. Namun jika akan diaplikasikan pada arsitektur mobile, MobileNetV2-BiLSTM lebih unggul karena memiliki waktu komputasi yang lebih cepat dengan performa yang tidak jauh berbeda jika dibandingkan dengan ResNet50-BiLSTM. Kata Kunci: SIBI, Pengenalan Bahasa Isyarat, DeepCNN, Ekstraksi Fitur, ResNet50, MobileNetV2, BiLSTM viii
Judul
Pengenalan Gerakan Isyarat Kata pada Kalimat SIBI (Sistem Isyarat Bahasa Indonesia) Menggunakan Deep Convolutional Neural Network sebagai Ekstraksi Fitur dan Long Short-Term Memory sebagai Metode Klasifikasi
Tgl Pemasukan
23 November 2020
NPM
1706095560
Abstrak English
ABSTRACT Name : Noer Fitria Putra Setyono Program : Magister Ilmu Komputer Title : Recognizing Word Gesture in Sign System for Indonesian Language (SIBI) Sentences Using Deep Convolutional Neural Network as Feature Extraction and Long Short-Term Memory as Classification SIBI is a sign language that is officially used in Indonesia. The use of SIBI is often found to be a problem because of the many gestures that have to be remembered. This study aims to recognize SIBI gestures by extracting hand and facial features which are then classified using Bidirectional Long ShortTerm Memory (BiLSTM). The feature extraction used in this research is Deep Convolutional Neural Network (DeepCNN) such as ResNet50 and MobileNetV2, where both models are used as a comparison. This study also compares the performance and computational time between the two models which is expected to be applied to smartphones later, where both models can now be implemented on smartphones. The results showed that the use of ResNet50-BiLSTM model have better performance than MobileNetV2-BiLSTM which is 99.89%. However, if it will be applied to mobile architecture, MobileNetV2-BiLSTM is superior because it has a faster computational time with a performance that is not significantly different when compared to ResNet50-BiLSTM. Keywords: SIBI, Sign Language Recognition, DeepCNN, Feature Extraction, ResNet50, MobileNetV2, BiLSTM ix
Subjek
Penguji 2
Lim Yohanes Stefanus
Penguji 3
Wisnu Jatmiko
Penguji 4
Pembimbing 1
Erdefi Rakun
Fisik
xv, 78 hlm.: ill.; 30 cm.
Bahasa
ind
Lulus Semester
Penerbitan
Depok: Fasilkom UI, 2020
No. Panggil
T-1266 (Softcopy T-974) Mak T-70
Penguji 1
Aniati Murni Arymurthy