Bibliografi
Pengarang
Aji Wuryanto;
Barcode
Cat. Karya
No. Induk
Pembimbing
Wisnu Jatmiko
Kata Kunci
computer vision, machine learning, deep learning, clustering, point cloud
Pembimbing 3
Pembimbing 2
Tahun buku
2020
Barcode RFID baru
11684199
Tahun Angkatan
2016
Progam Studi
Sistem Informasi
Lokasi
FASILKOM-UI;
Tanggal Datang
23/02/2021
Abstrak Indonesia
ABSTRAK Nama : Aji Wuryanto Program Studi : Sistem Informasi Judul : Segmentasi Semantik Menggunakan DGCNN dan Pairwise Linkage Clustering Sebagai Metode Pelabelan Gedung untuk Dataset LiDAR Perkotaan Perkembangan teknologi yang dapat membantu pengukuran luas dan volume suatu objek semakin umum. Salah satu teknologi yang dapat membantu pengukuran luas dan volume suatu objek adalah sensor Light and Detection Ranging (LiDAR). Dalam konteks pengukuran luas dan volume suatu objek dimana objek tersebut adalah bangunan, sensor LiDAR dapat dibantu oleh deep learning dan clustering agar dapat mengidentifikasi bangunan yang nantinya dapat dihitung luas dan volume bangunan tersebut. Dataset yang digunakan pada penelitian ini adalah LiDAR Margonda, Depok dan LiDAR Dublin, Irlandia. Metode deep learning yang digunakan untuk melakukan segmentasi semantik adalah Dynamic Graph Convolutional Neural Network (DGCNN) dan algoritma yang digunakan untuk melakukan pelabelan bangunan adalah Pairwise Linkage Clustering. Penelitian ini juga bermaksud untuk memberikan perbandingan dengan Euclidean Clustering sebagai algoritma pelabelan bangunan. Segmentasi semantik dilakukan agar dapat membedakan objek bangunan dengan objek bukan bangunan sedangkan pelabelan bangunan dilakukan agar dapat memisahkan setiap objek bangunan. Secara hasil, penelitian ini berhasil menggunakan DGCNN sebagai metode segmentasi semantik dan Pairwise Linkage Clustering sebagai metode pelabelan bangunan. Evaluasi dilakukan menggunakan metrik Accuracy, Recall, Precision, F-score dan Intersection over Union untuk metode segmentasi semantik sedangkan metrik yang digunakan untuk pelabelan bangunan adalah Accuracy, Recall, Precision, dan F-Score. Pada dataset Margonda, Depok nilai akurasi yang didapatkan oleh DGCNN adalah 82% dan nilai akurasi yang didapatkan oleh Pairwise Linkage Clustering adalah 4.7% untuk Scale Cut-Off Distance 100, 28% untuk Scale Cut-Off Distance 200, 38% untuk Scale Cut-Off Distance 400, dan 28% untuk Scale Cut-Off Distance 800. Pada dataset Dublin, Irlandia nilai akurasi yang didapatkan oleh DGCNN adalah 86% dan nilai akurasi yang didapatkan oleh Pairwise Linkage Clustering adalah 10% untuk Scale Cut-Off Distance 100, 30% untuk Scale Cut-Off Distance 200, 40% untuk Scale Cut-Off Distance 400, dan 35% untuk Scale Cut-Off Distance 800. Dalam pelabelan bangunan, Pairwise Linkage Clustering berhasil memberikan hasil yang lebih baik daripada Euclidean Clustering pada dataset Margonda, Depok sedangkan Euclidean Clustering berhasil memberikan hasil yang lebih baik daripada Pairwise Linkage Clustering di dataset Dublin, Irlandia. Kata kunci: computer vision, machine learning, deep learning, clustering, point cloud
Daftar Isi
Cat. Umum
Judul
Segmentasi Semantik Menggunakan DGCNN dan Pairwise Linkage Clustering Sebagai Metode Pelabelan Gedung untuk Dataset LiDAR Perkotaan
Asal
Korporasi
NPM
1606894452
Abstrak English
ABSTRAK Nama : Aji Wuryanto Program Studi : Sistem Informasi Judul : Segmentasi Semantik Menggunakan DGCNN dan Pairwise Linkage Clustering Sebagai Metode Pelabelan Gedung untuk Dataset LiDAR Perkotaan Perkembangan teknologi yang dapat membantu pengukuran luas dan volume suatu objek semakin umum. Salah satu teknologi yang dapat membantu pengukuran luas dan volume suatu objek adalah sensor Light and Detection Ranging (LiDAR). Dalam konteks pengukuran luas dan volume suatu objek dimana objek tersebut adalah bangunan, sensor LiDAR dapat dibantu oleh deep learning dan clustering agar dapat mengidentifikasi bangunan yang nantinya dapat dihitung luas dan volume bangunan tersebut. Dataset yang digunakan pada penelitian ini adalah LiDAR Margonda, Depok dan LiDAR Dublin, Irlandia. Metode deep learning yang digunakan untuk melakukan segmentasi semantik adalah Dynamic Graph Convolutional Neural Network (DGCNN) dan algoritma yang digunakan untuk melakukan pelabelan bangunan adalah Pairwise Linkage Clustering. Penelitian ini juga bermaksud untuk memberikan perbandingan dengan Euclidean Clustering sebagai algoritma pelabelan bangunan. Segmentasi semantik dilakukan agar dapat membedakan objek bangunan dengan objek bukan bangunan sedangkan pelabelan bangunan dilakukan agar dapat memisahkan setiap objek bangunan. Secara hasil, penelitian ini berhasil menggunakan DGCNN sebagai metode segmentasi semantik dan Pairwise Linkage Clustering sebagai metode pelabelan bangunan. Evaluasi dilakukan menggunakan metrik Accuracy, Recall, Precision, F-score dan Intersection over Union untuk metode segmentasi semantik sedangkan metrik yang digunakan untuk pelabelan bangunan adalah Accuracy, Recall, Precision, dan F-Score. Pada dataset Margonda, Depok nilai akurasi yang didapatkan oleh DGCNN adalah 82% dan nilai akurasi yang didapatkan oleh Pairwise Linkage Clustering adalah 4.7% untuk Scale Cut-Off Distance 100, 28% untuk Scale Cut-Off Distance 200, 38% untuk Scale Cut-Off Distance 400, dan 28% untuk Scale Cut-Off Distance 800. Pada dataset Dublin, Irlandia nilai akurasi yang didapatkan oleh DGCNN adalah 86% dan nilai akurasi yang didapatkan oleh Pairwise Linkage Clustering adalah 10% untuk Scale Cut-Off Distance 100, 30% untuk Scale Cut-Off Distance 200, 40% untuk Scale Cut-Off Distance 400, dan 35% untuk Scale Cut-Off Distance 800. Dalam pelabelan bangunan, Pairwise Linkage Clustering berhasil memberikan hasil yang lebih baik daripada Euclidean Clustering pada dataset Margonda, Depok sedangkan Euclidean Clustering berhasil memberikan hasil yang lebih baik daripada Pairwise Linkage Clustering di dataset Dublin, Irlandia. Kata kunci: computer vision, machine learning, deep learning, clustering, point cloud
Pengarang 2
Subjek
Penguji 2
Dina Chahyati
Penguji 3
Pembimbing 1
Ari Wibisono
Fisik
xvii,62 hlm. 30 cm
Bahasa
Ind
Lulus Semester
Ganjil 2020
Penerbitan
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
No. Panggil
SK-1803 (Softcopy SK-1284
Penguji 1
Ari Saptawijaya
Lulus semester SI