Bibliografi
Pengarang
Hajra Faki Ali;
Barcode
Judul English
Monolingual Bert is Better Than Multilingual Bert for Natural Language Inferevce in sw Ahili
Tim penguji 3
No. Induk
Tim Penguji 6
Tim penguji 4
Timpenguji 2
Tim Penguji 7
Keterangan
Kata Kunci
Monolingual, Multilingual, Natural Language Inference, Swahili, SwahBERT
Tim Penguji 5
Pembimbing 3
Pembimbing 2
Tahun buku
2024
Barcode RFID baru
11744473
Tahun Angkatan
2021
Progam Studi
Magister Ilmu Komputer
Tim penguji 1
Lokasi
FASILKOM-UI;
Tanggal Datang
17/07/2024
Lulus semester MTI
Abstrak Indonesia
ABSTRAC

Name : Hajra Faki Ali Study Program : Master of Computer Science Title : Monolingual BERT Is Better Than Multilingual BERT For Natural Language Inference In Swahili Supervisor : Adila Alfa Krisnadhi, S.Kom, M.Sc., Ph.D This research proposes the development of a monolingual model for Natural Language Inference (NLI) in Swahili to overcome the limitations of current multilingual models. The study fine-tunes the pre-trained SwahBERT model to capture Swahili's unique semantic relationships and contextual nuances. A critical component of this research is the creation of a SwahiliNLI dataset, crafted to reflect the intricacies of the language, thereby avoiding reliance on translated English text. Furthermore, the performance of the fine-tuned SwahBERT model is evaluated using both SwahiliNLI and the XNLI dataset, and compared with the multilingual mBERT model. The results reveal that the SwahBERT model outperforms the multilingual model, achieving an accuracy rate of 78.78% on the SwahiliNLI dataset and 73.51% on the XNLI dataset. The monolingual model also exhibits superior precision, recall, and F1 scores, particularly in recognizing linguistic patterns and predicting sentence pairings. This research underscores the importance of using manually generated datasets and monolingual models in lowresource languages, providing valuable insights for the development of more efficient and contextually relevant NLI systems, thereby advancing natural language processing for Swahili and potentially benefiting other languages facing similar resource constraints. Keywords: Monolingual, Multilingual, Natural Language Inference, Swahili, SwahBERT

Judul
Monolingual Bert is Better Than Multilingual Bert for Natural Language Inferevce in sw Ahili
Tgl Pemasukan
17 Juli 2024
NPM
2106759754
Abstrak English
ABSTRACT Name : Hajra Faki Ali Study Program : Master of Computer Science Title : Monolingual BERT Is Better Than Multilingual BERT For Natural Language Inference In Swahili Supervisor : Adila Alfa Krisnadhi, S.Kom, M.Sc., Ph.D This research proposes the development of a monolingual model for Natural Language Inference (NLI) in Swahili to overcome the limitations of current multilingual models. The study fine-tunes the pre-trained SwahBERT model to capture Swahili's unique semantic relationships and contextual nuances. A critical component of this research is the creation of a SwahiliNLI dataset, crafted to reflect the intricacies of the language, thereby avoiding reliance on translated English text. Furthermore, the performance of the fine-tuned SwahBERT model is evaluated using both SwahiliNLI and the XNLI dataset, and compared with the multilingual mBERT model. The results reveal that the SwahBERT model outperforms the multilingual model, achieving an accuracy rate of 78.78% on the SwahiliNLI dataset and 73.51% on the XNLI dataset. The monolingual model also exhibits superior precision, recall, and F1 scores, particularly in recognizing linguistic patterns and predicting sentence pairings. This research underscores the importance of using manually generated datasets and monolingual models in lowresource languages, providing valuable insights for the development of more efficient and contextually relevant NLI systems, thereby advancing natural language processing for Swahili and potentially benefiting other languages facing similar resource constraints. Keywords: Monolingual, Multilingual, Natural Language Inference, Swahili, SwahBERT
Subjek
Natural Language Inference
Penguji 2
Dinial Utami Nurul Qomarian
Penguji 3
Alfan Farizki Wicaksono
Penguji 4
Pembimbing 1
Adila Alfa Krisnadhi
Fisik
xi, 70 ill, 30 cm
Bahasa
Inggris
Lulus Semester
Genap 2023/2024
Penerbitan
Depok, Fasilkom UI, 2024
No. Panggil
T-1390 (Softcopy T-1099) MAK PI-190 TR-CSUI-063 Source Code-382
Penguji 1
Fariz Darari