Library Automation and Digital Archive
LONTAR
Fakultas Ilmu Komputer
Universitas Indonesia

Pencarian Sederhana

Find Similar Add to Favorite

Call Number KA-1396 (Softcopy KA-1387) MAK KA-1038
Collection Type Karya Akhir (KA)
Title Pemodelan untuk prediksi status pensiun janda/duda aparatur sipil negara menggunakan teknik data mining: studi kasus PT Taspen (persero)
Author Adityan Iguh Sasmito;
Publisher Jakarta : Program Studi Magister Teknologi Informasi Fasilkom UI, 2021
Subject Data mining
Location FASILKOM-UI-MTI;
Lokasi : Perpustakaan Fakultas Ilmu Komputer
Nomor Panggil ID Koleksi Status
KA-1396 (Softcopy KA-1387) MAK KA-1038 Ind TERSEDIA
Tidak ada review pada koleksi ini: 48508
ABSTRAK

Pensiun adalah jaminan hari tua dan penghargaan atas jasa aparatur sipil negara yang telah mengabdikan diri kepada negara. PT Taspen (Persero) sebagai Badan Usaha Milik Negara yang diberikan tugas oleh pemerintah untuk mengelola asuransi sosial aparatur sipil negara memiliki tantangan untuk memastikan uang pensiun disalurkan secara tepat. Pada pembayaran pensiun untuk kelompok janda/duda masih ditemukan ketidaktepatan pembayaran karena status pensiun janda/duda yang tidak teridentifikasi seperti telah menikah kembali. Penelitian ini bertujuan membentuk model prediksi status pensiun janda/duda yang memiliki potensi menikah kembali. Proses prediksi status pensiun janda/duda menggunakan teknik data mining klasifikasi dengan menggunakan data demografi, sosial ekonomi peserta pensiun dan data transaksi proses pengambilan pensiun pada kelompok pensiun janda/duda. Sebagai perbandingan digunakan 3 algoritma klasifikasi yaitu Decision Tree, Naïve Bayes dan Support Vector Machine. Beberapa atribut yang berpengaruh dalam penelitian ini yaitu jenis kelamin, usia, usia pernikahan sebelumnya, usia status janda/duda, dan kode pengambilan pensiun selama 3 bulan terakhir. Model yang terbentuk memberi wawasan bahwa pensiun duda dan semakin muda usia pernikahan, usia peserta serta usia status janda/duda memiliki potensi yang tinggi untuk menikah kembali. Hasil penelitian menunjukkan algoritma Support Vector Machine memiliki kinerja yang paling baik dengan tingkat akurasi sebesar 89,23%.