ABSTRAK
Akurasi hasil deteksi perubahan citra jarak jauh sangat tergantung pada akurasi metode klasifikasi yang digunakan. Salah satu cara untuk mendapatkan hasil yang lebih baik adalah dengan mengoptimal kan setiap prosedur pengolahan citra. Salah satunya dengan algoritma deteksi perubahan dengan menggunakan metode image differencing akan mendapatkan peta perubahan yang masih harus dianalisa sebagai prosedur klasifikasi citra binarisasi. Penelitian ini bertujuan melakukan kombinasi model penggabungan algoritma ambang. Serta membandingkan algoritma ambang untuk mendapatkan nilai ambang terbaik mengunakan fungsi entropi secara otomatis untuk memecahkan masalah deteksi perubahan dengan pendekatan klasifikasi data yang tidak tersedia. Dengan menggunakan asumsi model statistik untuk mengetahui kelas wilayah berubah dan tidak berubah yang menampilkan berbagai perkiraan algoritma ambang mengunakan analisa discriminan, entropi lokal, entropi gabungan, entropi global, relatif entropi lokal, relatif entropi gabungan dan relatif entropi global. Pada penelitian ini digunakan model fusi Markov random fields untuk menggabungkan informasi-informasi deteksi perubahan hasil identifikasi algoritma ambang yang lebih komprehensif dalam menunjang pembuat keputusan. Penelitian ini menemukan bawa pengunaan algoritma analisa discriminan terlalu sensitive untuk mendeteksi perubahan. Tingkat akurasi deteksi wilayah berubah terbaik mengunakan metode analisa discriminan sebesar 99% namun juga terlalu sensitif terhadap perubahan yang ditunjukan dengan tidak hanya wilayah yang terbakar terdeteksi juga wilayah tidak terbakar. Akurasi deteksi terbaik yang dapat dicapai mengunakan fungsi entropi dimiliki oleh lokal relatif entropi (99%) dan lokal entropi (97%) yang menjadikan sangat baik adalah mempunyai kesalahan deteksi kecil. Algorima fusi mengunakan metode Markov memberikan akurasi deteksi terbaik sebesar 93%, lebih rendah dari kemampuan deteksi dengan algoritma ambang yang menggunakan fungsi entropi. Namun algoritma fusi MRF akan semakin memastikan wilayah yang berubah. Secara umum, ditemukan bahwa pengurangan jumlah pixel dalam variasi histogram dalam citra berpengaruh besar pada tingkat akurasi deteksi perubahan dan sensitifitas algoritma ambang untuk mendeteksi perubahan. Semakin rendah jumlah pixel dalam variasi histogram semakin baik klasifikasi wilayah berubah terdeteksi dan semakin cepat waktu pemprosesan.
ix +94 hlm; 23 lamp; 21 gbr; 8tbl
|