Masalah kependudukan di Indonesia pada hakekatnya menyangkut tiga aspek yaitu aspek kuantitas, aspek kualitas dan aspek mobilitas. Saat ini dari aspek kuantitas, Indonesia memiliki jumlah penduduk yang sangat besar yang mencapai angka 237,6 juta jiwa pada tahun 2010. Badan Kependudukan dan Keluarga Berencana Nasional (BKKBN) sebagai lembaga yang melaksanakan pengendalian penduduk dan menyelenggarakan keluarga berencana tidak dapat memenuhi target jumlah peserta KB sebesar 65% dari wanita usia subur berstatus menikah. Penelitian ini melakukan clustering kabupaten/kota di Indonesia berdasarkan capaian program keluarga berencana dengan tujuan untuk mengetahui karakteristiknya. Variabel yang digunakan pada penelitian ini sebanyak 21 variabel yang diturunkan dari indicator kinerja BKKBN dan factor yang mempengaruhi penggunaan kontrasepsi yang dikemukakan oleh Berthrand. Metode clustering yang digunakan dalam penelitian ini adalah data mining dengan menggunakan algoritma Self-Organizing Maps (SOM). Hasil dari penelitian ini menunjukkan bahwa teknik data mining clustering dengan algoritma SOM, berhasil mengelompokkan Indonesia ke dalam enam klaster pada data set tahun 2010, yang kemudian dilakukan identifikasi karakterristik wilayah tersebut sesuai dengan variabel yang mencirikan kondisi wilayahnya. Kondisi tahun 2010 ini digunakan sebagai dasar untuk melihat perkembangan capaian program keluarga berencana tiap tahunnya pada periode tahun 2010-2013. Perbandingan data set antar tahun pada periode tahun 2010 sampai tahun 2013 dengan menggunakan relative denstity mampu secara otomatis mendeteksi perubahan struktur klaster berupa klaster yang menghilang, muncul, membelah, bergabung, membesar, dan mengecil dari klaster sebelumnya. Perpindahan klaster ini dapat digunakan untuk mendeteksi perubahan hasil capaian program keluarga berencana serta memberikan rekomendasi program berdasarkan hasil capaian program keluarga berencana.