ABSTRAK
Pasar modal merupakan salah satu penopang perekonomian di Indonesia dikarenakan pasar modal adalah salah satu sarana penambahan modal bagi perusahaan dalam melaksanakan operasional bisnisnya. Selain itu, pasar modal juga dapat memberikan keuntungan bagi perorangan atau badan usaha (investor), yang dapat digunakan untuk biaya hidup di masa kini dan masa depan. Saham adalah salah satu instrumen yang diperjualbelikan di pasar modal yang dapat memberikan keuntungan hingga 20-25% per tahun, namun juga memiliki resiko yang lebih tinggi dibandingkan instrumen lainnya, dikarenakan fluktuasi harga saham yang tinggi. Investor harus berhati-hati dalam memilih waktu yang tepat dalam melakukan transaksi jual beli saham, jika tidak ingin mendapatkan kerugian yang besar. Salah satu teknik dalam menentukan waktu transaksi saham adalah berdasarkan teori Efficient Market Hypothesis (EMH) yang menyatakan bahwa harga saham merefleksikan informasi yang dipublikasikan terkait saham tersebut. EMH berkaitan erat dengan behavioral economics yang menyatakan bahwa keputusan investor dipengaruhi oleh persepsi atau emosi (sentimen) dari informasi yang diterimanya. Informasi terkait suatu saham dapat dibaca di media online dalam hal ini artikel berita yang diterbitkan oleh berbagai situs berita di Indonesia. Berdasarkan EMH dan behavioral economis tersebut, penelitian ini bertujuan untuk melihat apakah sentimen media online dapat mengklasifikasikan pergerakan harga saham di Indonesia, dengan ruang lingkup media online yang diteliti adalah www.bisnis.com. Saham yang diteliti adalah saham PT. Bank Central Asia, Tbk (BBCA). Metode penelitian yang dilakukan adalah penelitian kuantitatif dengan metodologi eksperimental menggunakan pendekatan analisis sentimen. Proses ekstraksi fitur dari artikel berita bisnis.com dilakukan dengan merepresentasikan artikel berita dalam bentuk vektor menggunakan term frequency (tf), term frequency inverse document frequency (tf-idf), dan doc2vec. Algoritma klasifikasi yang digunakan adalah naive bayes, k-nearest neighbor (KNN), dan support vector machine (SVM). Setelah mendapatkan hasil klasifikasi sentimen dari berita, penelitian dilanjutkan dengan membandingkan hasil klasifikasi sentimen tersebut dengan harga aktual saham untuk hari itu sampai dengan lima hari ke depan. Hasil penelitian menunjukkan bahwa representasi vektor menggunakan tfidf menunjukkan hasil yang lebih baik dengan akurasi klasifikasi SVM sebesar 78,66%. Sementara perbandingan akurasi hasil klasifikasi sentimen berita dengan harga aktual pergerakan saham didapatkan sebesar 63,11%. Hasil ini didapatkan untuk kondisi sentimen berita dan harga saham di hari yang sama. Hal ini menunjukkan bahwa para investor dapat mempertimbangkan sentimen berita terkait saham tertentu di situs www.bisnis.com di hari yang sama untuk melakukan transaksi jual beli saham.
|