ABSTRAK

Pada dunia ritel grosir, keragaman pembelian barang oleh pelanggan berkaitan erat terhadap laba. Pembelian satu barang yang sama dalam jumlah besar akan mendapatkan potongan harga yang lebih besar. Pemotongan harga ini mengurangi laba dari perusahaan ritel. Oleh karena itu, pelanggan selalu diharapkan untuk membeli banyak barang yang berbeda. PT Lotte Shopping Indonesia telah menetapkan target pencapaian untuk keragaman pembelian barang pada segmen pelanggan ritel dan horeka. Namun saat ini target tersebut masih belum dapat terpenuhi. Kesulitan yang dialami adalah menawarkan barang yang tepat kepada pelanggan. Inovasi yang dapat diterapkan adalah pengembangan sistem rekomendasi untuk menawarkan barang yang relevan. Penelitian ini menggunakan pendekatan collaborative filtering untuk membangun model sistem rekomendasi. Penelitian dilakukan terhadap data penjualan 2,5 tahun terakhir dengan jumlah transaksi mencapai 4,6 juta. Hasil dari penelitian menunjukkan bahwa metode memory-based k-Nearest Neighbors mengungguli metode model-based Singular Value Decomposition. Selain itu ditemukan bahwa segmentasi pelanggan tidak berhasil meningkatkan kinerja sistem