ABSTRAK

vii Universitas Indonesia ABSTRAK Nama : Dian Arianto Program Studi : Magister Ilmu Komputer Judul : Analisis Sentimen Berbasis Aspek dan Pemodelan Topik pada Destinasi Pariwisata Berdasarkan Ulasan Pengguna Google Maps dan Tripadvisor: Studi Kasus Candi Borobudur dan Candi Prambanan Pembimbing : Dr. Indra Budi, S.Kom., M.Kom. Ulasan adalah opini seseorang yang ditulis mengenai pengalamannya terhadap suatu produk atau jasa. Ulasan umumnya ditulis pada platform media sosial atau marketplace. Seiring dengan berkembangnya teknologi internet dan produk yang dijual secara daring, ulasan sangat penting peranannya karena dapat memengaruhi keputusan seseorang dalam memutuskan pilihannya terhadap suatu produk/kegiatan/jasa. Penelitian ini berfokus untuk melakukan analisis sentimen berbasis aspek dan pemodelan topik pada destinasi pariwisata Indonesia yaitu Candi Borobudur dan Candi Prambanan. Analisis sentimen berbasis aspek dilakukan menggunakan lima pendekatan classical machine learning yaitu Naïve Bayes (NB), Logistic Regression (LR), Decision Tree (DT), Random Forest, dan Extra Trees (ET) dengan menggunakan fitur unigram+bigram+trigram dan memanfaatkan kombinasi penggunaan data latih dan data uji, penggunaan penghapusan stopwords, penggunaan stemming dan emoji processing, dan penggunaan data latih yang di-over-sampling. Kinerja model dievaluasi dengan membandingkan skor F1 pada masing-masing hasil eksperimen untuk mengetahui skenario terbaik yang dapat digunakan untuk ulasan pada bidang pariwisata. Aspek yang digunakan pada penelitian ini yaitu ada enam aspek sesuai rekomendasi aspek dari World Tourism Organization (WTO) yaitu Daya Tarik, Amenitas, Aksesibilitas, Citra, Harga, dan Sumber Daya Manusia (SDM). Setelah melakukan analisis sentimen berbasis aspek, dilakukan pemodelan topik untuk mengetahui topik apa saja yang umum ditemukan pada setiap aspek pariwisata dan setiap polaritas sentimen ulasan. Metode yang digunakan dalam pemodelan topik adalah Latent Dirichlet Allocation (LDA) yang dievaluasi dengan coherence score. Data yang digunakan adalah ulasan pengguna Google Maps dan Tripadvisor. Hasil eksperimen menunjukkan bahwa model LR adalah model yang dapat memprediksi data dengan baik pada hampir semua skenario pada setiap aspek pada penelitian ini. Model LR mendapatkan skor tertinggi pada aspek Daya Tarik (Skenario 4) dengan skor 84,4%, Amenitas (Skenario 11) 84,2%, Aksesibilitas (Skenario 11) 89,1%, Citra (Skenario 3) 70%, dan SDM (Skenario 12) dengan 92,8%. Sementara itu, model DT dapat memprediksi data dengan baik pada aspek Harga (Skenario 6) dengan skor 91,3%. Dari hasil pemodelan topik, dapat direkomendasikan beberapa hal untuk perkembangan pariwisata di Candi Borobudur dan Candi Prambanan. Kata Kunci: analisis sentimen berbasis aspek, pemodelan topik, Candi Borobudur, Candi Prambanan, ulasan pengguna Google Maps dan Tripadvisor