ABSTRAK Nama : Akmal Farhan Raiyan Program Studi : Ilmu Komputer Judul : Restorasi Citra Berkabut dengan Vision Transformer Kabut merupakan fenomena alami yang diakibatkan oleh keberadaan partikel kecil di atmosfer. Kabut yang ada di atmosfer dapat mengurangi kontras dan mendistorsi warna hasil citra yang diambil dalam kondisi alami. Keberadaan kabut pada citra sangat mengganggu aplikasi computer vision maupun fotografi konsumen. Sebagian besar algoritma computer vision memerlukan citra yang jernih untuk dapat berfungsi dengan baik, sehingga diperlukanlah teknik untuk menghilangkan kabut dari citra. Image dehazing bertujuan untuk memulihkan citra jernih dari citra yang dirusak oleh kabut. Image dehazing dapat dilakukan menggunakan model machine learning. Dewasa ini, banyak model machine learning yang digunakan berbasiskan arsitektur Vision Transformer. Penelitian sebelumnya mengenai Vision Transformer menunjukkan bahwa model Transformer dapat berkinerja lebih baik dibandingkan model state-of-the-art ResNet untuk image recognition jika dilatih menggunakan dataset yang besar. Pada penelitian ini, model Uformer dilatih menggunakan dataset citra berkabut dengan ukuran yang besar. Dilakukan juga implementasi Restormer untuk sebagai model alternatif untuk merestorasi citra berkabut. Pengujian kinerja model Uformer dan Restormer dilakukan menggunakan dataset HAZE dan RESIDE. Analisis terhadap model dilakukan secara kualitatif, kuantitatif, dan cross-dataset. Hasil evaluasi model Uformer dan Restormer dibandingkan dengan model Mod PDR-Net Based Conditional Generative Adversarial Network. Evaluasi hasil Uformer dan Restormer menunjukkan bahwa model berbasis Transformer dapat menyaingi Mod PDR-Net Based CGAN untuk restorasi citra berkabut pada dataset testing, namun tidak dapat mengungguli model tersebut dalam pengujian cross-dataset. Kata kunci: Citra Berkabut, Restorasi Citra, Uformer, Restormer, Transformer