Perbankan di Indonesia telah meluncurkan aplikasi perbankan seluler dengan tujuan untuk memberikan pengalaman layanan yang baik bagi nasabah. Bank harus meningkatkan efektivitas aplikasi perbankan seluler mereka untuk memberikan peningkatan nilai aplikasi tersebut. Dalam upaya menemukan ruang perbaikan bagi perbankan, penelitian ini dilakukan untuk mengetahui topik yang umum dibicarakan serta mengetahui sentimen ulasan pengguna layanan perbankan seluler di Indonesia pada ulasan Google Play yang dimiliki oleh BNI, BCA, dan Mandiri. Penelitian ini menambah penerapan text mining dan membantu pengembang platform digital perbankan ulasan dengan efisien, dan mendukung pengambilan keputusan dan strategi bisnis unggul. Tiga algoritma klasifikasi sentimen, yaitu logistic regression, naïve bayes, dan support vector machine digunakan dalam penelitian ini. Algoritma dijalankan pada pemodelan train data, k-fold cross validation data train, k-fold cross validation semua data, dan prediksi data test. Pemodelan topik adalah LDA (Latent Dirichlet Allocation) untuk kategori sentimen. Algoritma logisitc regression memiliki akurasi tertinggi yaitu 97,00 %. Model digunakan pada data baru, diketahui ulasan didominasi dengan sentimen negatif yaitu sebesar 62,22% atau sebanyak 7.374 sedangkan ulasan sentimen positif sebesar 37,78% atau sebanyak 4.477 ulasan. Pemodelan topik ulasan aplikasi perbankan seluler sentimen positif memiliki nilai koheren tertinggi 0,649 dengan jumlah 19 topik membahas kemudahan dan kelancaran transaksi, kelengkapan fitur, keamanan, akses dan login, kecepatan dan efisiensi, dan kemudahan penggunaan. Pemodelan topik ulasan aplikasi perbankan seluler sentimen negatif memiliki nilai koheren tertinggi 0,440 dengan jumlah 18 topik membahsas push notifikasi uang masuk, top-up dan transfer gagal, kesulitan login aplikasi perbankan seluler, update mengganggu, gagal transaksi, saldo terpotong saat gagal transaksi, error sistem, kendala BI-Fast dan kartu, dan masalah verifikasi.