Library Automation and Digital Archive
LONTAR
Fakultas Ilmu Komputer
Universitas Indonesia

Pencarian Sederhana

Find Similar Add to Favorite

Call Number KA-851 (softcopy KA-849) MAK KA-508
Collection Type Karya Akhir (KA)
Title Analisis sentimen masyarakat terhadap masalah kemacetan di jakarta pada media sosial twitter
Author A Hartanto;
Publisher Jakarta : Program Studi Magister Teknologi Informasi Fasilkom UI, 2016
Subject Sentiment analysis
Location FASILKOM-UI;
Lokasi : Perpustakaan Fakultas Ilmu Komputer
Nomor Panggil ID Koleksi Status
KA-851 (softcopy KA-849) MAK KA-508 Indonesia TERSEDIA
Tidak ada review pada koleksi ini: 43604
ABSTRAK

Jakarta merupakan daerah yang memiliki ciri tersendiri di Indonesia, yakni sebagai ibukota negara.Banyak permasalahan yang dihadapi oleh Pemerintahan Provinsi Daerah Khusus Ibukata Jakarta (Pemprov DKI Jakarta), diantaranya yang paling sering kita dengar adalah kemacetan lalu lintas. Jumlah rata-rata laporan masyarakat tentang kemacetan lalu lintas adalah 343 laporan perbulan, sedangkan penanganan yang dapat diselesaikan hanya 80 laporan perbulan. Banyaknya jumlah laporan masyarakat terhadap masalah kemacetan lalu lintas, maka membutuhkan prioritas terhadap laporan yang harus diutamakan penanganannya. Dalam penelitian ini melakukan analisis sentimen pada media sosial Twitter untuk dapat melakukan prioritas penanganan masalah kemacetan di Jakarta berdasarkan tingkat kepuasan masyarakat terhadap kondisi lalu lintas di Jakarta. Langkah-langkah dalam melakukan analisis sentimen antara lain preprocessing, feature extraction dan classification. Preprocessing data teks yang dilakukan antara lain case folding, tokenisasi, filter token, translate dan stopword removal. Sedangkan feature extraction yang digunakan adalah model unigram dan bigram dengan kamus sentimen, sedangkan pembobotan menggunakan metode Term Frequency - Inverse Document Frequency(TF-IDF). Pembuatan Model klasifikasi sentimen menggunakan dua algoritma yaitu Naïve Bayes dan Support Vector Machine (SVM).Sedangkan mengukur sentimen masyarakat menggunakan Net Sentiment Score dari Netbasedengan visualisasi menggunakan calendar view. Hasil dari pembuatan model klasifikasi sentimen dalam penelitian menunjukkan bahwa algoritma SVM menghasilkan akurasi yang lebih tinggi dari pada algoritma Naïve Bayes. Hasil dari visualisasi dengan calendar view menunjukkan bahwa sentimen masyarakat memiliki nilai Net Sentiment Score yang rendah di hari Kamis dan Jumat pada waktu sore. Sedangkan pada hari Minggu dan awal bulan memiliki nilai net sentiment score yang lebih tinggi. Sehingga pada waktu Kamis dan Jumat pada waktu sore perlu penanganan masalah kemacetan yang lebih utama.