Library Automation and Digital Archive
LONTAR
Fakultas Ilmu Komputer
Universitas Indonesia

Pencarian Sederhana

Find Similar Add to Favorite

Call Number KA-1579 (Softcopy KA-1564) MAK KA-1216
Collection Type Karya Akhir (KA)
Title Analisis kesehatan mental pada media sosial berbahasa Indonesia
Author Nurriasih Fatimah;
Publisher Jakarta : Program Studi Magister Teknologi Informasi Fasilkom UI, 2022
Subject Social media
Location FASILKOM-UI-MTI;
Lokasi : Perpustakaan Fakultas Ilmu Komputer
Nomor Panggil ID Koleksi Status
KA-1579 (Softcopy KA-1564) MAK KA-1216 Ind TERSEDIA
Tidak ada review pada koleksi ini: 49045
ABSTRAK

Di Indonesia, gangguan mental merupakan kontributor beban penyakit terendah, tetapi menjadi penyebab kecacatan utama jika dibandingkan dengan penyakit kardiovaskuler, neoplasma, maternal dan neonatal, juga infeksi pernafasan dan TB. Di media sosial, banyak pengguna melakukan diskusi dan membagikan konten edukatif mengenai kesehatan mental. Pengguna yang merupakan penderita gangguan mental juga banyak yang melakukan self reported diagnoses. Penelitian ini menggunakan data yang berasal dari Twitter yang akan digunakan untuk membangun model klasifikasi, analisis faktor apa yang menyebabkan sebuah tweet dapat diklasifikasikan sebagai tweet yang merefleksikan gangguan mental, dan menganalisis tweet yang merefleksikan gangguan mental. Model klasifikasi yang dibangun adalah model relevansi untuk menentukan relevansi dari suatu tweet dan model kategori untuk mengkategorikan tweet yang relevan ke dalam empat kategori, yaitu selfdiagnosed, terindikasi, penderita, dan penyintas. Model relevansi terbaik adalah model yang dibangun menggunakan Random Forest dan CountVectorizer unigram dengan hasil evaluasi yang didapatkan, yaitu akurasi 89,93%, precission 90,56%, recall 89,92%, dan f1-score 90%, sedangkan model kategori terbaik adalah model yang dibangun menggunakan Logistic Regression, TfidfVectorizer bigram, dan SMOTE dengan hasil evaluasi yang didapatkan adalah akurasi 83,62%, precission 83,22%, recall 83,61%, dan f1-score 81,98%. Faktor yang membuat sebuah tweet dapat diklasifikasikan sebagai tweet yang merefleksikan gangguan mental adalah fitur yang dimiliki oleh tweet karena setiap tweet memiliki karakteristik fiturnya masing-masing. Implikasi teoritis dari penelitian ini adalah penelitian ini dapat digunakan sebagai referensi untuk melakukan penelitian yang terkait analitika media sosial, terutama penelitian yang memiliki tema tentang kesehatan mental, sedangkan implikasi praktikal adalah hasil penelitian ini dapat dimanfaatkan sebagai data sekunder pada sistem informasi mengenai kesehatan mental yang dikembangkan oleh organisasi terkait dan dapat dimanfaatkan sebagai referensi tambahan dalam menangani masalah kesehatan mental di Indonesia.