Library Automation and Digital Archive
LONTAR
Fakultas Ilmu Komputer
Universitas Indonesia

Pencarian Sederhana

Find Similar Add to Favorite

Call Number KA-1823 (Softcopy KA-1812) MAK KA-1459
Collection Type Karya Akhir (KA)
Title Analisis Sentimen Pengguna Twitter Di Indonesia Terhadap Kebijakan Work From Office (WFO) Pascapandemi Covid-19
Author Rhoma Cahyanti;
Publisher Jakarta : Program Studi Magister Teknologi Informasi Fasilkom UI, 2024
Subject Topic Modelling
Location FASILKOM-UI;
Lokasi : Perpustakaan Fakultas Ilmu Komputer
Nomor Panggil ID Koleksi Status
KA-1823 (Softcopy KA-1812) MAK KA-1459 Indonesia TERSEDIA
Tidak ada review pada koleksi ini: 54730
ABSTRAK

Dunia menghadapi ancaman pandemi Covid-19 pada akhir tahun 2019. Tanggapan terhadap situasi pandemi menimbulkan perubahan dalam cara bekerja dan memaksa sebagian besar pekerja non-esensial untuk beradaptasi dengan bekerja dari jarak jauh. Setelah penyebaran virus dan tingkat kematian akibat Covid-19 mulai menurun, organisasi dan perusahaan mulai memberlakukan kembali kebijakan WFO. Namun, kembalinya aktivitas bekerja secara normal tidak disambut baik oleh para pekerja. Sejumlah survei mengungkapkan bahwa banyak pekerja yang enggan kembali bekerja di kantor setelah beradaptasi dengan bekerja dari rumah selama dua tahun pandemi. Penelitian menggunakan experimental research untuk melakukan analisis sentimen dan pemodelan topik terhadap kebijakan WFO. Analisis sentimen dilakukan dengan membandingkan lima algoritma pembelajaran mesin, Naïve Bayes, Support Vector Machine, Decision Tree, Random Forest, dan Neural Networks. Sedangkan pemodelan topik menggunakan algoritma Latent Dirichlet Allocation. Penelitian menggunakan data dari Twitter yang diambil sejak bulan Januari 2022 hingga Mei 2023. Berdasarkan hasil eksperimen, algoritma Neural Networks dengan sampel data oversampling memberikan performa terbaik dalam memprediksi sentimen. Model menghasilkan nilai akurasi sebesar 75,61% dan f1-score 75,16%. Berdasarkan hasil penelitian, sentiment yang paling banyak diungkapkan di Twitter terkait kebijakan WFO adalah netral, disusul negatif, dan terakhir positif. Sedangkan dari hasil pemodelan topik, sentiment positif menghasilkan 3 topik, yaitu “keseruan WFO karena bertemu teman kantor”, “bekerja secara WFO meningkatkan fokus dan produktivitas”, serta “aktivitas jajan dan makan siang saat WFO”. Sentimen negatif 4 menghasilkan topik, di antaranya “kemacetan lalu lintas saat WFO”, “peningkatan biaya transport dan pengeluaran saat WFO”, “efek WFO terhadap kesehatan”, serta “kemalasan di pagi hari saat WFO”. Sedangkan sentimen netral menghasilkan 3 topik, yaitu “lowongan kerja hybrid working atau WFA”, “bekerja secara WFO”, dan “rutinintas WFO”.