Library Automation and Digital Archive
LONTAR
Fakultas Ilmu Komputer
Universitas Indonesia

Pencarian Sederhana

Find Similar Add to Favorite

Call Number SK-1908 (Softcopy SK-1340)
Collection Type Skripsi
Title Deteksi Macbeth ColorChecker pada Citra Berkabut Menggunakan YOLOv4
Author Ferro Geraldi Hardian;
Publisher Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
Subject
Location FASILKOM-UI;
Lokasi : Perpustakaan Fakultas Ilmu Komputer
Nomor Panggil ID Koleksi Status
SK-1908 (Softcopy SK-1340) TERSEDIA
Tidak ada review pada koleksi ini: 48940
ABSTRAK Nama : Ferro Geraldi Hardian Program Studi : Ilmu Komputer Judul : Deteksi Macbeth ColorChecker pada Citra Berkabut Menggunakan YOLOv4 Deteksi objek merupakan permasalahan populer pada bidang computer vision yang bertujuan untuk mengidentifikasi dan mencari lokasi objek pada suatu citra. Performa metode-metode deteksi objek tentunya dipengaruhi oleh kualitas citra. Di sisi lain, pada kehidupan sehari-hari terdapat citra berkabut. Citra berkabut adalah citra yang diambil dalam kondisi berkabut. Kabut tersebut dapat menghamburkan sinar cahaya dan menyebabkan citra yang diambil mengalami penurunan kualitas. Dataset-dataset citra yang populer digunakan untuk deteksi objek juga biasanya mengasumsikan citra diambil pada kondisi tanpa kabut. Oleh karena itu kebanyakan metode deteksi objek pada umumnya tidak dapat berperfoma dengan baik pada citra berkabut. YOLOv4 merupakan arsitektur deteksi objek state-of-the-art yang memiliki performa tinggi baik dari segi akurasi dan kecepatan. Penelitian ini bertujuan untuk menguji kapasitas YOLOv4 dengan citra yang berkabut dan juga mencari skenario pelatihan terbaik bagi YOLOv4 untuk mendeteksi objek pada citra berkabut. Skenario pelatihan yang diusulkan ada tiga, pelatihan hanya dengan citra tanpa kabut, pelatihan hanya dengan citra berkabut, dan pelatihan dengan kedua tipe citra. Pengujian dilakukan pada dataset Hazy Series dimana permasalahan utamanya adalah untuk mendeteksi satu buah objek Macbeth ColorChecker yang ada pada setiap citra. Hasil penelitian menunjukan bahwa kabut memiliki pengaruh yang besar pada model yang tidak dilatih dengan citra berkabut. Selain itu, ditunjukan bahwa model YOLOv4 yang dilatih dengan citra berkabut dan citra tanpa kabut memiliki performa terbaik, dengan akurasi 0,88 dan Intersection of Union (IOU) 0,71 untuk dataset Hazy. Kata kunci: Citra berkabut, deteksi objek, YOLOv4, deep learning