Library Automation and Digital Archive
LONTAR
Fakultas Ilmu Komputer
Universitas Indonesia

Pencarian Sederhana

Find Similar Add to Favorite

Call Number SK-1803 (Softcopy SK-1284
Collection Type Skripsi
Title Segmentasi Semantik Menggunakan DGCNN dan Pairwise Linkage Clustering Sebagai Metode Pelabelan Gedung untuk Dataset LiDAR Perkotaan
Author Aji Wuryanto;
Publisher Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
Subject
Location FASILKOM-UI;
Lokasi : Perpustakaan Fakultas Ilmu Komputer
Nomor Panggil ID Koleksi Status
SK-1803 (Softcopy SK-1284 TERSEDIA
Tidak ada review pada koleksi ini: 48279
ABSTRAK Nama : Aji Wuryanto Program Studi : Sistem Informasi Judul : Segmentasi Semantik Menggunakan DGCNN dan Pairwise Linkage Clustering Sebagai Metode Pelabelan Gedung untuk Dataset LiDAR Perkotaan Perkembangan teknologi yang dapat membantu pengukuran luas dan volume suatu objek semakin umum. Salah satu teknologi yang dapat membantu pengukuran luas dan volume suatu objek adalah sensor Light and Detection Ranging (LiDAR). Dalam konteks pengukuran luas dan volume suatu objek dimana objek tersebut adalah bangunan, sensor LiDAR dapat dibantu oleh deep learning dan clustering agar dapat mengidentifikasi bangunan yang nantinya dapat dihitung luas dan volume bangunan tersebut. Dataset yang digunakan pada penelitian ini adalah LiDAR Margonda, Depok dan LiDAR Dublin, Irlandia. Metode deep learning yang digunakan untuk melakukan segmentasi semantik adalah Dynamic Graph Convolutional Neural Network (DGCNN) dan algoritma yang digunakan untuk melakukan pelabelan bangunan adalah Pairwise Linkage Clustering. Penelitian ini juga bermaksud untuk memberikan perbandingan dengan Euclidean Clustering sebagai algoritma pelabelan bangunan. Segmentasi semantik dilakukan agar dapat membedakan objek bangunan dengan objek bukan bangunan sedangkan pelabelan bangunan dilakukan agar dapat memisahkan setiap objek bangunan. Secara hasil, penelitian ini berhasil menggunakan DGCNN sebagai metode segmentasi semantik dan Pairwise Linkage Clustering sebagai metode pelabelan bangunan. Evaluasi dilakukan menggunakan metrik Accuracy, Recall, Precision, F-score dan Intersection over Union untuk metode segmentasi semantik sedangkan metrik yang digunakan untuk pelabelan bangunan adalah Accuracy, Recall, Precision, dan F-Score. Pada dataset Margonda, Depok nilai akurasi yang didapatkan oleh DGCNN adalah 82% dan nilai akurasi yang didapatkan oleh Pairwise Linkage Clustering adalah 4.7% untuk Scale Cut-Off Distance 100, 28% untuk Scale Cut-Off Distance 200, 38% untuk Scale Cut-Off Distance 400, dan 28% untuk Scale Cut-Off Distance 800. Pada dataset Dublin, Irlandia nilai akurasi yang didapatkan oleh DGCNN adalah 86% dan nilai akurasi yang didapatkan oleh Pairwise Linkage Clustering adalah 10% untuk Scale Cut-Off Distance 100, 30% untuk Scale Cut-Off Distance 200, 40% untuk Scale Cut-Off Distance 400, dan 35% untuk Scale Cut-Off Distance 800. Dalam pelabelan bangunan, Pairwise Linkage Clustering berhasil memberikan hasil yang lebih baik daripada Euclidean Clustering pada dataset Margonda, Depok sedangkan Euclidean Clustering berhasil memberikan hasil yang lebih baik daripada Pairwise Linkage Clustering di dataset Dublin, Irlandia. Kata kunci: computer vision, machine learning, deep learning, clustering, point cloud