ABSTRACT
Nama :
Heri Heryadi
Program Studi :
Magister Teknologi Informasi
Judul :
Data Matching untuk Agregasi Entitas Debitur Kredit Individual
Pembimbing :
Dr. Indra Budi, S.Kom., M.Kom.
PT X adalah sebuah lembaga swasta yang diberikan kewenangan oleh Otoritas Jasa Keuangan (OJK) untuk mengelola dan mendistribusikan data Sistem Layanan Informasi Keuangan (SLIK) OJK. Salah satu tantangan yang dihadapi oleh PT X adalah melakukan agregasi data entitas debitur kredit individual. Agregasi disini diartikan sebagai penyatuan data entitas debitur yang seharusnya disatukan atau memisahkan. Saat ini sistem yang digunakan mengagregasikan data debitur hanya mampu menggunakan nomor identitas, yaitu Nomor Induk Kependudukan (NIK), Paspor, Nomor Pokok Wajib Pajak (NPWP), dan lainnya. Hal ini ternyata belum memberikan hasil yang baik karena data nomor identitas tersebut banyak yang tidak sesuai dan ditambah dengan implementasi nomor Kartu Tanda Penduduk Elektronik (e-Ktp) yang menyebabkan terjadinya duplikasi data karena NIK-nya banyak yang berubah. Penelitian ini bertujuan mengimplementasikan teknik data matching dengan mengkombinasikan algoritma similarity yaitu Exact Comparison (EC) dan Levenshtein Distance (LD) dan hasilnya digunakan untuk membuat model data dengan algoritma Decision Tree (DT), Naοve Bayes (NB), dan Support Vector Machine (SVM) untuk melakukan agregasi data debitur kredit tersebut. Hasil penelitian mengenai penggunaan EC dan LD dalam proses data matching yang hasilnya digunakan untuk membuat model data dengan ketiga algoritma DT, NB, dan SVM secara berturut-turut memiliki Precision sebesar 0,926, 0,881, dan 0,234. Nilai Recall untuk DT, NB, dan SVM secara berturut-turut sebesar 0,921, 0,872, dan 0,217. Sedangkan untuk nilai harmonic mean (F1-Score) untuk DT, NB, dan SVM secara berturut-turut sebesar 0,926, 0,881, dan 0,234. Berdasarkan data sampel yang digunakan tersebut diketahui bahwa algoritma DT memberikan prediksi klasifikasi yang lebih menguntungkan dibandingkan dengan NB dan SVM.
Kata kunci: data matching, exact comparison, Levenshtein, entitas data debitur kredit di Indonesia, decision tree, naοve bayes, support vector machine.